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Abslmet. We prove, for any finite time, the existence of a weak dynamics far a class of 
reaction-diffusion systems in two space dimensions perturbed by a white noise. This class 
includes models which may exhibit complex behaviour i n  space and time. Our approach, 
based on the methods of constructive quantum field theory, extends previous results 
established for gradient-type systems. 

1. Introduction 

Motivated by the approach to quantum field theory known as stochastic quantization 
it was proved recently [l, 21 that certain gradient-type stochastic parabolic PDES in two 
space dimensions possess weak solutions in spite of infinite renormalization terms 
which appear in the formal expression of the equations. This result was obtained using 
techniques borrowed from constructive field theory. Its interest, however, goes beyond 
the initial context. In fact these equations represent a particular case of infinite- 
dimensional stochastically perturbed dynamical systems which appear naturally in 
several areas of science. The restriction to gradient-type equations, however, excludes 
those very interesting situations where the corresponding determinstic system may 
exhibit chaotic behaviour. 

In this paper it is shown that the theory can be extended to a class of non-gradient 
systems which we believe includes a large number of physically relevant examples. 

To characterize the equations that we are able to treat, we start from the general 
formt 

a,+,= u A & , + f i ( m , ) + & a , w ,  (1) 

E ( J , ~ , , ; ( x ) J , . ~ , . , , ( x ' ) )  = S(X  - x ' ) S ( t -  (')Six x, X ' E  R 2  (2) 

with 

where { & ( x ) ) , ~ = , ~ , , ,  and {&&)},; are vectors in some finite dimensional space, 
Furthermore the E. are polynomials in @, and E is a parameter which measures the 
intensity of the noise. Quite generally, can be decomposed in the following way 

d V  k =  - - + E - ( + )  
a+ (3) 

where V is an appropriate potential function. 

t For E = O  this is the type of system considered, for example, in [3]. 
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Our basic assumption is that there exists a decomposition like (3) in which the 
potential term provides, for large values of the field +, a restoring force which, in a 
sense to be made more precise later, will dominate the non-gradient part. Nevertheless, 
this structure permits chaotic behaviour at the deterministic level. As it is, (1) does 
not make sense due to the singular character of the noise. However, in two dimensions, 
for polynomial V and F, it is sufficient to replace them by Wick ordered expressions 
to obtain meaningful evolution equations in an appropriate weak probabilistic sense. 

Le! 'js add s ~ m e  ccmme~:s DZ this poix!. with respect !D !he ~ d e : ! y i ~ g  determinisiic 
dynamics, the addition of white noise in equation (1) generates large fluctuations at 
small scales in space. As soon as JV and F are nonlinear, the self-coupling introduced 
by local powers of the field induces divergent high frequency behaviour which needs 
to be removed in order to obtain finite solutions. This removal, the renormalization 
procedure, does not modify the characteristic behaviour of the system and results in 
I redefir?ition of the physical parameters describing it. For examp!e, after renorma!iza= 
tion, the equations of evolution keep the same form except that only the renormalized 
ones are meaningful. For fixed physical parameters there is a unique renormalized 
form of these equations. In general, the renormalized equations can only be described 
through a limiting procedure. However, in two spacetime dimensions, for polynomial 
I', the renormalized expression can be analytically written and just results in replacing 
powers of the field by their Wick ordered equivalent. 

with A ,  > 0. 
Notice !hat in !his cage the gradient and non-gradient paas are orthogonal. 
It is not difficult to construct examples of reaction-diffusion equations with more 

complicated behaviour. For example, taking 4 three-dimensional, one can have a 
structure similar to the Lorenz model. 

To simplify the discussion of the model we will introduce as in [I] a regularization 
in space and carry out the proof of existence of weak solutions for the following 
modified and renormalized version of the model given by (4) and ( 5 )  

J ,$ t  = - ( - A +  I) '$ ,+( -A+ l )"+":[A~( l  - l + 1 2 ) $ t - A 2 ( 1  -1412)$21:+&Jrw~ 
( 6 )  

a,$,= - ( - A +  ])'$>+(-A+ l)"+":[A~(l-1+12)$2+A2(1-~~~2)$tl:+&J,w~ 
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with 

€(a, W,,,(X)J,. W , , , K ( ~ ’ ) )  = &S( i - i ’ ) ( -A+ 1 ) - l t p ( x  -2). (7) 
for some 0 < p < 1 to be chosen later. 

The Wick ordering symbol : : means the following: 

:@: = @ 

:I4l2$fJ1: = 4 + 3 E 2 C 4 ,  + # , ( & E Z C )  = :4;:+4,:f,fJ;: 
: l @ l Z 4 > :  = 4:-3E2C42+ c&($;- E Z C )  = :&: + 42:f,fJf: 

(8) 

where c = C(x, x) = ( -A+  l ) - ’ ( x ,  x ) .  Of course, c is infinite so that the right-hand side 
of (6) is purely formal. 

The original model ( 4 )  and ( 5 )  corresponds to p = 1 .  We shall comment on this 
point later. 

Proceeding now as in [ l ]  and [Z] we transform (6) into an integral system 

4, = Z,+ ds  e x p [ - ( 1 - ~ ) C - ~ ] C ’ ~ ~ : A ( @ ~ ) @ ~ :  (9) Jo‘ 
where Z, satisfies 

dZ, = -C-’Z, d i  + EJ,  W,. (10) 
The next step, which defines the weak dynamics, consists in defining the evolution 
semigroup by 

andf(@,)  is a functional of @,(.). 

integral in (12), which was possible due to the gradient character of the equation. 

the RHS of (1 1) can be reduced to the results already established in [ 1,2]. 

In [ l ]  and [ 2 ]  the control of e‘, was obtained by performing first the stochastic 

As we shall see in the next section, under appropriate conditions, the existence of 

3. Existence of weak dynamics 

To explain our strategy, let us separate in 6, the gradient and the non-gradient parts. 
This is obtained by decomposing A into its diagonal and non-diagonal parts 

A = A D + A N D .  ( 1 3 )  

t< = 5D.8 f 5ND.I 

Then taking account of orthogonality 

where 
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Following [l], to prove the existence of the evolution we need to show that 
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E+,(e”c,) <cc (15) 
for some p > 1. 

Our approach is inspired by the discussion of the Girsanov formula in chapter 7 
of [4]. 

We first regularize 5, by substituting Z, with ZIN1, its projection to the first N 
eigenvectors of an orthogonal basis, and C(x, y) with CN(x. y) and define in general 

For example, we can take for A x  and Q k  the system of eigenvalues and of eigenvectors 
of ( - A +  1) in the volume A. We have now 

E+Jexp(pS~”)) = E+,,(exp(K\”+ K:”)) (17) 
where 

and 

Applying the Holder inequality 

The important observation which justifies the splitting of 5, is that 

E,”(exp(pK\”’)) = I .  (19) 
This follows from: 

(i) pKi” is the Girsanov exponent corresponding to the drift 
p2cl;-~l/2 : A , , ( z ~ N I ) ~ I N I .  

(ii) the corresponding stochastic (finite-dimensional) equation has a strong solution 

We want to show now that under suitable conditions the second factor in (18) is 

In fact 

for any finite time. 

uniformly bounded in N .  
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This condition is clearly satisfied in our model if p - 1 is sufficiently small (in fact, if 
A:(p2-  I )  < A i ) .  The RHS of (20) is bounded in N as it follows from explicit calculation 
of the stochastic integral and application of the estimates of [ I ]  valid for p<&.  AS 
in [ I ]  this result holds pc. a.e. in the initial condition &,, where pc, is the Gaussian 
measure with covariance E ~ ( - A +  l)-‘ .  

4. Generalizations 

The result of the previous section is not limited to the particular model (6). We want 
to describe here the class of equations for which the extension is straightforward. 
Consider the system 

Jr+ = - ( - A +  I ) ~ + + ( - P +  I ) - ~ + P :  -E+R + E J r w  (22) 
a+ 

+ is an n-dimensional vector, J , W  satisfies (7) and V ( + )  and F ( + )  are local poly- 
nomials in  $j. V is assumed to be hounded below and increasing for 1 +[ + a like some 
even polynomial. 

If (JV/J+, C’-’F)=O and 

where M is a constant independent of N, our previous analysis applies almost 
verbatimt. 

If (JV/J+, C 1 - P F ) # O ,  (23) must be replaced by 

We notice that if we call pK\” the Girsanov exponent associated to the drift 
p 2 C $ p ’ / z :  F“’:, the condition 

which is certainly satisfied for polynomial F”’, implies [4] 

E(exp(pK\”))< 1. (25) 

In conclusion the following theorem has been proved 

Theorem 1. For p < & ,  the system (22) with the above hypotheses on V and K under 
the condition (24), possesses a weak dynamics defined by 

E*,,u(+,)) E,,,(.w,) e‘,) (26) 

where f (2 , )  is a functional of Z, belonging to Lq(dpL,,,) for an appropriate q, and 
dp”,, is the Ornstein-Uhlenbeck measure corresponding to the solution of (IO). 

t Actually in ( 2 3 )  and (24) we can allow a growth o f  M with N provided it  is not loo strong. 
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Everywhere in our equations we have included the parameter E representing the 
intensity of the noise. In  many physical situations, one is interested in the limit when 
E is small. In the case of the ordinary stochastic differential equations there is a well 
developed theory of small stochastic perturbations which shows that important informa- 
tions on the deterministic part of the equations are obtained by studying the limit 
when E + 0 and that very interesting phenomena take place for E small. In [2] it was 
shown that the theory of small random perturbations can be adapted, up to a certain 
extent, to the case of gradient systems in two space dimensions. Tne resuits of the 
present paper imply that the extension holds also for non-gradient systems with the 
same limitations. These limitations come from the fact that due to the ultraviolet 
divergencies the random perturbation is always strong at sufficiently small space scale. 

Let us conclude with some comments. The techniques of [l,  21 do not apply when 
p = 1 due to the circumstance that the measure corresponding to the nonlinear equations 
is noi absoiuieiy coriiinuuus wiih respeci io ihai gemrsied by ihe linear part. iiuwever, 
it is reasonable to expect that this difficulty can be overcome by a suitable adaptation 
of the renormalization group methods developed in constructive field theory. Similarly, 
one thinks that these methods can be used to handle higher-dimensional cases and 
the problem of the existence and of the construction of stationary measures. 
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